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Abstract. An integral equation approach is developed to investigate phase coexistence properties of Ising
spin fluids with Yukawa ferromagnetic and Lennard-Jones nonmagnetic interactions in the presence of an
external field. The calculations are carried out on the basis of the Duh and Henderson closure with a
specific Duh-like partitioning of the total potential. The coupled set of the Ornstein-Zernike equation, the
closure relation and the external field constraint are solved using an efficient numerical algorithm. The
phase diagrams are evaluated in a wide range of varying the external field and the ratio of strengths of
Yukawa to Lennard-Jones interactions. Different types of the phase diagram topology as well as various
external field dependencies of critical temperatures and densities are identified. The complexity with respect
to simple Lennard-Jones fluids is explained by coupling between spatial and spin degrees of freedom in
the system. A comparison of the obtained theoretical results with simulation data is made and a good
agreement is observed.

PACS. 64.60.-i General studies of phase transitions – 64.70.Fx Liquid-vapor transitions – 75.50.Mm
Magnetic liquids

1 Introduction

Fluids with ferromagnetic spin interactions have been in-
tensively studied during the past several decades [1–25].
Mean field (MF) approaches [1,2,4,12,13,18–20,25],
integral equation (IE) theories [3,9–11,14–16,21–24],
as well as Monte Carlo (MC) simulation techniques
[3,5–8,11,17–25] have been used to investigate thermo-
dynamic, magnetic, and critical properties of spin fluids.
Various spin fluid models, such as the Ising, XY and
Heisenberg ones, with different types of magnetic and non-
magnetic interactions have been considered. As was es-
tablished, these models exhibit a rich variety in the phase
diagram behaviour. It is characterized by the existence
of critical, tricritical, critical end, and triple points re-
lated to phase transitions between gas, liquid, paramag-
netic and ferromagnetic states. Similar phase diagrams
have been found in other systems including spin lattice
gas models [26,27], binary mixtures [28–38], He3-He4 mix-
tures [39–41], etc.

Previous IE studies of spin fluids have been restricted
mainly to so-called ideal models, where the attractive
nonmagnetic interactions are absent [3,9–11,14,16,24].
More complicated nonideal models have also been consid-
ered [15,21–23]. However, both magnetic and attractive
nonmagnetic potentials were assumed to be of the same
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Yukawa-type (YK) form (such models will be referred to
as YK-YK). While the exchange integral of spin interac-
tions can indeed be expressed in terms of the YK function,
it is generally believed that in real systems the attraction
part of nonmagnetic interactions at long distances has the
asymptotic form of the Lennard-Jones (LJ) potential. De-
spite this, the development of an IE approach for spin
fluids with LJ nonmagnetic interactions has never been
addressed.

In the IE consideration of YK-YK models, the repul-
sion part of nonmagnetic interactions was modeled either
by the hard-sphere potential [3,9–11,14–16] or a soft-core
function [21–23]. The latter can be obtained by shifting
and truncating the LJ function at short distances of or-
der of the size of the interacting particles [20,21]. This
of course has nothing to do with the original LJ poten-
tial which includes both the soft-core repulsion as well as
the long-range attraction in the form of the inverse (12-6)
power law dependence on interparticle separation. This is
contrary to the case of the YK potential where the inter-
action decays exponentially with increasing the distance
between interacting particles.

Until now, only one work [19] dealt with the more nat-
ural case of LJ nonmagnetic and YK magnetic interactions
(the corresponding model will be referred to as LJ-YK).
The calculations in this work have been performed for the
LJ-YK Ising model in the absence of an external field using
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MC simulation techniques as well as a van der Waals-like
version of the MF theory. However, no explicit relations
connecting the parameters of the van der Waals equation
of state with the microscopic parameters of the LJ and
YK potentials have been in fact presented. Moreover, the
MF approximation can give only qualitative results, since
it neglects pair correlations in spin space [20–23]. A more
precise IE consideration is required to obtain a quantita-
tive description. Besides the theoretical interest, this may
be important from a practical point of view as well, be-
cause the Ising model can be applied to the description
of phase transitions in real systems such as inert fluids,
Au-Co and Co80Pd20 melts [42,43], etc.

The existing IE approaches for spin fluids with YK in-
teractions are based exclusively on the (hard or soft) mean
spherical approximation (MSA) for the bridge function
[21–23]. The MSA has proved to be very accurate when
handling the YK magnetic and nonmagnetic correlations
in the Ising [21] and XY [22,23] spin fluids. However, this
approximation is not necessarily as good for other types
of interactions. The most notorious example is the pure
LJ fluid, where the soft MSA (SMSA) combined with the
standard Weeks, Chandler, and Andersen (WCA) parti-
tioning scheme [44] does not provide a quantitative de-
scription and more precise approximations of the bridge
function are needed [45]. Among them it is worth men-
tioning the reference hypernetted chain (RHNC) approxi-
mation [45,46], a modification of the original hypernetted
chain (HNC) approach, the HNC-MSA (HMSA) [47–49],
as well as the Duh and Henderson (DH) closure which in-
cludes a specific partitioning of the LJ potential [45,50,
51].

The RHNC requires minimization of the free energy
and its extension to spin fluids leads to tremendous com-
putational efforts. Similar difficulties arise with an ex-
tension of the HMSA, because it also demands time-
consuming evaluations of the Helmholtz free energy (an
explicit expression for which appears to be too compli-
cated when involving spin degrees of freedom). On the
other hand, the DH closure is simpler in the implementa-
tion and provides nearly the same level of accuracy as the
cumbersome RHNC and HMSA schemes. Quite recently,
it has been shown that the DH partitioning can also be
successfully used in an inhomogeneous IE description of
the LJ fluid, leading to a quantitative evaluation of den-
sity profiles at the gas-liquid interface [52].

In this paper we propose an extension of the DH ap-
proach to fluid systems with both translational and spin
interactions. It consists in a modification of the DH closure
to the Ornstein-Zernike (OZ) equation in the presence of
an external field constraint by using a specific Duh-like
partitioning of the full potential. The theory is applied to
the LJ-YK Ising spin fluid model and the obtained phase
diagrams are compared with simulation data. The depen-
dencies of critical temperatures and densities on the ex-
ternal field are analyzed as well. The paper is organized
as follows. The theory is described in Section 2. The re-
sults are presented and discussed in Section 3. Concluding
comments are given in Section 4.

2 Theory

2.1 Model

Let us consider a system of point particles with embedded
Ising spins described by the Hamiltonian

H =
N∑

i<j

[
ϕ(rij) − J(rij) sisj

]
− B

N∑

i=1

si . (1)

Here, N is the total number of particles, ϕ(r) and J(r) de-
note the potential and exchange integral correspondingly
of nonmagnetic and spin-spin interactions, ri designates
the three dimensional (3D) spatial coordinate of the ith
particle carrying spin si, B relates to the external mag-
netic field, and rij = |ri − rj | is the interparticle separa-
tion. In the LJ-YK Ising spin fluid model, the nonmagnetic
potential is chosen in the form of the 12-6 LJ function

ϕ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (2)

while the spin interactions are described by the YK ex-
change integral

J(r) =
εσ

r
exp

[
− r − σ

σ

]
, (3)

where ε and ε are the intensities of nonmagnetic and mag-
netic interactions, respectively, and σ denotes the size of
the particles.

The Ising spins take only two values, i.e. si = ±1, i =
1, 2, . . . , N. Thus, the system can be mapped onto a binary
mixture with N+ and N− particles of type “+” (spin up)
and “−” (spin down), respectively, where N+ +N− = N .
Then equation (1) reduces to

H =
N+∑

i<j

φ++(rij)+
N−∑

i<j

φ−−(rij)+
N+,N−∑

i,j=1

φ+−(rij)−BM,

(4)
where M =

∑N
i=1 si = N+ − N− relates to the magneti-

zation of the system and

φ++(r) = φ−−(r) = ϕ(r) − J(r) ,
(5)

φ+−(r) = φ−+(r) = ϕ(r) + J(r)

are the potentials of interactions between like and unlike
particles, respectively.

2.2 Integral equations

According to the liquid state theory [53,54], a complete
description of the system can be carried out in terms of the
total and direct correlation functions hαβ and cαβ . Such
functions satisfy the OZ equation which for the mixture
takes the form

hαβ(r) = cαβ(r) +
∑

γ=+,−
ργ

∫
cαγ(|r − r′|)hγβ(r′) dr′ ,

(6)
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where ρ± = N±/V are the partial number densities with
V being the volume of the system, and indexes α, β, γ
accept two values “ + ” and “ − ”.

Further, a closure relation must be defined. Its general
form is

hαβ(r)= exp
[
−φαβ(r)

kBT
+hαβ(r)−cαβ(r)+bαβ(r)

]
−1 , (7)

where bαβ denotes the bridge function and kBT is the tem-
perature with the Boltzmann constant. The bridge func-
tion cannot be determined exactly within any theory, but
there are many approaches enabling to approximate it.
The crudest among them is the HNC approximation which
corresponds simply to putting b ≡ 0. More accurate ap-
proximations, such as the RHNC, HMSA, SMSA, and DH
[46,48–51,53] lead, as was mentioned in the introduction,
to more sophisticated calculations. It has been shown for
the pure LJ fluid and its mixtures that an efficient de-
scription follows from the DH approximation [38,45,50,
51]. The DH bridge function reads

bαβ(r) = −s2
αβ

2
1

1 + sαβ(5sαβ + 11)/(7sαβ + 9)
(8)

for sαβ > 0 and bαβ(r) = −s2
αβ/2 at sαβ ≤ 0 with sαβ(r)

being the renormalized indirect correlation function.
In our case, according to equation (5), the indirect cor-

relation function can be cast in the form

sαβ(r) = hαβ(r) − cαβ(r) − ϕlr(r) ∓ Jlr(r)
kBT

, (9)

where ϕlr(r) and Jlr(r) are the long-ranged parts of the LJ
and YK potentials, respectively. Like for pure LJ fluids,
we choose the DH partitioning [51] for the nonmagnetic
part of the potential,

ϕlr(r) = −4ε
(σ

r

)6

exp

[
− 1

ρ∗

(
σ

r

)6ρ∗]
, (10)

where ρ∗ = ρσ3 = (N/V )σ3 is the dimensionless density.
On the other hand, like for ideal Ising fluids with YK
magnetic interactions it is quite natural to choose the long-
ranged part of J(r) in the Boltzmann-like form [21],

Jlr(r) = J(r) exp
[
− ϕs(r)

kBT

]
, (11)

where ϕs(r) denotes the repulsion part of the shifted LJ-
potential, i.e., ϕs(r) = ϕ(r)+ ε at r < 6

√
2σ and ϕs(r) = 0

for r ≥ 6
√

2σ. In the limiting case ε → 0 of the absence of
magnetic interactions we obtain the original DH closure.

2.3 External field constraint

From thermodynamic relations it follows that the Gibbs
free energy of a nonmagnetic binary mixture has the form

G = µ+N+ + µ−N− , (12)

where µ+ and µ− are the chemical potentials of species
“+” and “ − ”, respectively. At the same time, the Gibbs
free energy of a magnetic fluid in the presence of an ex-
ternal field is

G = µN − BM . (13)

Taking into account the equalities N = N+ + N− and
M = N+ − N−, one obtains that both forms of G are
identical if and only if

B =
µ− − µ+

2
, (14)

µ =
µ+ + µ−

2
. (15)

The latter quantity (Eq. (15)) should be related to the
chemical potential of the Ising fluid. Equation (14) forms
the so-called external field constraint (FC) which should
be imposed on the chemical potentials of the two species to
perform an equivalent mapping from the binary mixture
description to the Ising fluid representation [21].

It is worth mentioning that when flipping all N+ spins
from up (s = +1) to down (s = −1) and all N− spins
from down to up (then, in particular, N+ ↔ N−) with-
out changing their spatial coordinates, the sum of the first
three terms on the right-hand side of equation (4) remains
unchanged. This is so due to the symmetrical properties
of the binary potentials (see Eq. (5)). During such a mu-
tual exchange the change in the magnetization is ∆M =
−2(N+−N−) = −2M and we have that ∆H = −B∆M =
2BM . On the other hand, the corresponding change in the
Gibbs free energy according to equations (12) and (14) is
equal to ∆G = (µ− − µ+)(N+ − N−) = 2BM (the same
result follows from Eq. (13), since µ and N are invariant
with respect to the above transformation N+ ↔ N−).
Therefore, ∆G = ∆H = 2BM .

The independent variables in the binary mixture de-
scription are the total density ρ and concentration x, i.e.,

ρ = ρ+ + ρ− =
N

V
, x =

N+

N
, 1 − x =

N−
N

. (16)

Thus µ± = µ±(ρ, x, T ) and equation (14) can be presented
in a more explicit form,

µ−(ρ, x, T ) − µ+(ρ, x, T ) = 2B . (17)

In the Ising fluid representation, at any given values ρ, T ,
and B, the external field constraint (Eq. (17)) should be
solved,

x = x(ρ, T, B) , (18)

and the mapping from (ρ, x, T ) to the new set(
ρ, x(ρ, T, B), T

) ≡ (ρ, T, B) of variables should be per-
formed [21]. Since M = N+ − N− = xN − (1 − x)N =
(2x−1)N , the solution (18) is related to the magnetization
per particle

m =
M

N
= 2x − 1 ≡ m(ρ, T, B) (19)

of the Ising fluid.
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2.4 Thermodynamic and magnetic quantities

Using standard formulas [53,54] for binary mixtures one
finds that the pressure can be calculated from the virial
equation of state

P (ρ, x, T ) = ρkBT − 2π

3

+,−∑

α,β

ραρβ

∫ ∞

0

dφαβ

dr
gαβ(r)r3dr ,

(20)
where ρ+ = xρ, ρ− = (1 − x)ρ, and gαβ(r) = hαβ(r) +
1 denotes the radial distribution function. The chemical
potentials can be evaluated using the Kirkwood formula
as [21,45,55]

µα(ρ, x, T ) = kBT (lnρα + 3 lnΛα) + kBT
∑

β=+,−
ρβ

×
∫ ∞

0

[
1
2
h2

αβ(r) − 1
2
hαβ(r)cαβ(r) − cαβ(r) (21)

+bαβ(r)gαβ(r) − hαβ(r)
sαβ(r)

∫ sαβ(r)

0

bαβ(s′)ds′
]
4πr2dr ,

where Λα denotes the de Broglie thermal wavelength. Tak-
ing into account equation (8), the integration in equa-
tion (21) with the DH bridge function can be carried out
analytically,
∫ sαβ(r)

0

bαβ(s′)ds′ =
1

500

{
5sαβ(r)

[
162 − 35sαβ(r)

]

(22)
+2250 ln

3
3 + sαβ(r)

+ 36 ln
3

3 + 5sαβ(r)

}

for sαβ(r) > 0 and
∫ sαβ(r)

0 b(s′)ds′ = −s3
αβ(r)/6 for

sαβ(r) ≤ 0.
In view of the explicit expressions (Eqs. (21) and (22))

for the chemical potentials µ± and the corresponding so-
lution (Eq. (18)) to the external FC (Eq. (17)), the pres-
sure of the Ising fluid can be evaluated according to equa-
tion (20) as P (ρ, x, T ) = P (ρ, x(ρ, T, B), T ) ≡ P (ρ, T, B).
Similarly all other thermodynamic and magnetic quanti-
ties of the Ising fluid system can be calculated. In partic-
ular, the magnetic susceptibility can be obtained by dif-
ferentiating equation (19) at constant values of ρ and T
as χ = ρ ∂m(ρ, T, B)/∂B.

2.5 Phase separations

The phase transitions between gas and liquid states can be
determined at a given temperature T from the mechanical
and chemical equilibrium conditions

P
(
ρI, xI, T

)
= P

(
ρII, xII, T

)
,

µ+

(
ρI, xI, T

)
= µ+

(
ρII, xII, T

) ≡ µI,II
+ , (23)

µ−
(
ρI, xI, T

)
= µ−

(
ρII, xII, T

) ≡ µI,II
− ,

where ρI,II and xI,II are the densities and concentrations
of coexisting phases I and II. The conditions should be

complimented by the external FC (Eq. (17)) which now
reads

µI,II
− − µI,II

+ = 2B . (24)

In view of the solution x = x(ρ, T, B) (see Eq. (18)) which
automatically satisfies equation (24), the coexistence con-
ditions (Eq. (23)) reduce to the form

P
(
ρI, T, B

)
= P

(
ρII, T, B

)
,

(25)
µ
(
ρI, T, B

)
= µ

(
ρII, T, B

)
,

where µ(ρ, T, B) ≡ µ(ρ, x(ρ, T, B), T ) is the chemical po-
tential of the Ising fluid (Eq. (15)). This form is similar
to that of a simple fluid, but the additional dependence
of P and µ on the external field B should be taken into
account.

The paramagnetic-ferromagnetic transition in the
Ising fluid can be found as a boundary Curie curve Tλ(ρ)
in the temperature-density plane below which, i.e., for
T < Tλ(ρ), nonzero (spontaneous) magnetization m �= 0
(see Eq. (19)) becomes possible in the absence (B = 0) of
an external field. On the other hand, for T > Tλ(ρ), only
the trivial solution m = 0 will be obtained at B = 0.

3 Results

3.1 Numerical and simulation details

The coupled set of OZ-DH-FC integro-algebraic equa-
tions (6), (7), and (17) together with complemen-
tary relations (8)–(11) and (21) was iteratively solved
with respect to functions hαβ and cαβ by adapt-
ing the MDIIS (modified direct inversion in the it-
erative subspace) algorithm [21–24,56]. The OZ equa-
tions (Eq. (6)) were first reduced to the linear system
hαβ(k) = cαβ(k) +

∑
γ=+,− ργcαγ(k)hγβ(k) by apply-

ing the Fourier transform A(k) =
∫

V A(r) exp(ik · r)dr =∫ rmax

0
4πr2A(r) sin(kr)/(kr)dr within a finite but suffi-

ciently large r-domain of size rmax 	 σ. The OZ equa-
tions were further solved analytically in k-space as h(k) =
[I−c(k)ρ]−1c(k), where h and c are the matrices with el-
ements hαβ(k) and cαβ(k), respectively, ρ = diag(ρ+, ρ−)
is a diagonal matrix and I denotes the unit matrix. Then
applying the backward Fourier transform, the residuals to
the DH closure (Eq. (7)) and FC relation (Eq. (17)) have
been calculated and the MDIIS procedure was repeated
until the solutions hαβ(r) and cαβ(r) have converged with
a relative root mean square residual uncertainty of 10−6.

The ratio R of strengths of YK ferromagnetic (ε ≥ 0)
to LJ nonmagnetic (ε > 0) interactions was introduced as

R =
ε

ε
≥ 0 . (26)

In the presentation, we use the dimensionless density ρ∗ =
ρσ3, temperature T ∗ = kBT/ε, and external field B∗ =
B/ε.
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The simulations were carried out using the Gibbs en-
semble MC (GEMC) approach [57] and the grand canon-
ical ensemble MC method combined with multiple his-
togram reweighting (MHR) techniques [58] for evaluating
the gas-liquid and liquid-liquid transitions. The Binder
crossing scheme [17,59] based on canonical MC was em-
ployed to determine the paramagnetic-ferromagnetic tran-
sition (at B = 0). Other simulation details are similar to
those reported in references [17,19–21]. Some simulation
data for B = 0 have been taken from reference [19].

3.2 Zero magnetic field

3.2.1 IE versions

The results for gas-liquid and liquid-liquid coexistence
densities of the LJ-YK Ising fluid obtained within the OZ-
DH-FC approach in the absence (B = 0) of an external
field for different ratios R = 0, 0.05, 0.075, 0.09, 0.1, 0.115,
0.1333, and 0.2 are presented in Figure 1 by the short-
dashed curves. The magnetic transition is shown by the
thin lines. The coexistence densities were evaluated using
explicitly the equilibrium conditions (Eq. (25)). This eval-
uation scheme we will refer to as the explicit equating of
the pressure and chemical potential (EPCP). The EPCP
evaluation has been carried out at rmax = 10σ 	 σ. Fur-
ther increasing rmax does not affect the solutions. The cor-
responding GEMC and MHR data are plotted in Figure 1
by open and full circles, respectively. As can be seen, the
theoretical and simulation predictions agree well except in
the critical regions, where the EPCP, GEMC and MHR
binodals terminate.

The termination is explained by the appearance of
huge density fluctuations which cannot be properly han-
dled neither by the GEMC and MHR techniques because
of the finiteness of the simulation boxes nor by the OZ-
DH-FC theory due to the approximate character of the
DH closure. Within the OZ-DH-FC approach the termi-
nation means that the desired solutions ρI,II to the set of
EPCP equations (Eq. (25)) begin to disappear when ap-
proaching critical temperatures too close. Note that the
chemical potential µ (Eq. (15)) evaluated directly in terms
of correlation functions (Eq. (21)) is not (to some extent)
thermodynamically self-consistent with the pressure P ob-
tained via the virial route (Eq. (20)), because the corre-
lation functions themselves are calculated only approx-
imately. In particular, the Gibbs-Duhem thermodynamic
relation ρ(∂µ/∂ρ)T,B = (∂P/∂ρ)T,B (connecting the pres-
sure and chemical potential) will not be satisfied exactly.
This discrepancy is not so important in subcritical regions
which are far enough from critical points and where the
gas and liquid states are well separated in density. How-
ever, with approaching critical points, the relative level of
thermodynamic inconsistency becomes too high, result-
ing in no solution to the EPCP equations (Eq. (25)). Be-
cause of this, an alternative Maxwell construction (MWC)
scheme has also been utilized. It can be derived by inte-
grating the above Gibbs-Duhem relation and substituting

Fig. 1. The gas-liquid and liquid-liquid binodals of the LJ-YK
Ising fluid obtained for different ratios R within the OZ-DH-
FC approach at B = 0 using the EPCP (short-dashed curves)
and MWC (solid curves) schemes. The OZ-SMSA-FC and OZ-
KH-FC results are given by the upper and lower lying dashed
curves, respectively. The GEMC and MHR data are shown as
open and full circles, respectively. The MF predictions are pre-
sented by the dotted curves. The triple point is represented as
the horizontal dashed line. The magnetic transition is plotted
by the thin lines.

the obtained chemical potential into the second line of
equation (25). Then one finds,

P
(
ρI, T, B

)
= P

(
ρII, T, B

)
= P ,

(27)(
1
ρI

− 1
ρII

)
P =

∫ ρII

ρI
P (ρ, T, B)

dρ

ρ2
,

where P denotes the coexistence pressure.
It is worth mentioning that contrary to the EPCP ap-

proach, the MWC scheme requires the existence of con-
tinuous (van der Waals-like) isotherms P (ρ, T, B) inside
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the whole two-phase region ρ ∈ [ρI, ρII] (to perform the
integration according to Eq. (27)). At the same time, the
computations show that the original OZ-DH-FC solutions
to the correlation functions disappear when approaching a
metastable (∂P (ρ, T, B)/∂ρ|T,B < 0) region which lies in-
side the [ρI, ρII]-density interval. Other IE approaches may
lead to the existence of solutions even in the metastable re-
gion. A typical example is the OZ-SMSA-FC approach for
Ising fluids with YK magnetic and YK attractive nonmag-
netic interactions [21]. In order to ensure that this is also
the case for the LJ-YK Ising fluid model, the SMSA bridge
function bαβ(r) = ln[1 + sαβ(r)] − sαβ(r) complimented
by the standard WCA partitioning ϕlr(r) = ϕ(r) − ϕs(r)
of the LJ part [45] of the total potential (Eq. (9)) has
also been considered (see the definition of ϕs(r) just after
Eq. (11)). Another important example is the Kovalenko
and Hirata (KH) closure [60,61] which has the form
bαβ(r) = ln[1 + ταβ(r)] − ταβ(r) for ταβ = hαβ − cαβ > 0
and bαβ(r) = 0 at ταβ ≤ 0. The KH approach combines
in fact the SMSA and HNC bridge functions and does not
require any partitioning. Being applied to the LJ-Yukawa
Ising fluids, the corresponding KH version will be referred
to as the OZ-KH-FC one.

Despite the fact that in the metastable regions there
are no solutions to the original OZ-DH-FC integral equa-
tions (see above), our investigations show that such so-
lutions nevertheless can be obtained by reducing the
r-domain size to relatively small values rmax ∼ 5σ. This
reduction can be considered as a modification of the orig-
inal DH-like partitioning scheme (Eqs. (10) and (11)),
where the latter corresponds to the limiting case rmax →
∞. The finite-size effects have been taken into account
by adding the appropriate corrections (like in MC simula-
tions) to the virial pressure P (and µ+,−). In particular,
the pressure has been corrected by performing analyti-
cally the integration in Eq. (20) over r in the interval
[rmax,∞] assuming gαβ(r) = 1 for r > rmax. The DH
modification allows us to reproduce a continuous shape
of the binodals in the critical regions. A more rigorous
description requires the enforcing of the thermodynamic
self-consistency between different (virial, energy, and com-
pressibility) routes. This question presents a very difficult
problem which up to date is not completely solved even
for pure LJ systems. It goes beyond the scope of the cur-
rent study of more complicated Ising fluids and can be the
subject of further investigations.

The MWC results obtained within the modified OZ-
DH-FC scheme at rmax = 5σ are presented in Figure 1 by
the solid curves. They appear to be very close to the EPCP
predictions in the subcritical regions. When approach-
ing critical points, the increased discrepancy between the
EPCP and MWC binodals indicates an increased relative
level of thermodynamic inconsistency of the original DH
approximation. The computations have shown that in the
subcritical regions the MWC results are virtually inde-
pendent of the value of the truncation radius provided
rmax ≥ 5σ, so that the finite-size effects have indeed been
taken into account properly. Moreover, the MWC binodals
practically coincide with MC simulation data in a wide

temperature and density range. The results corresponding
to the OZ-SMSA-FC approach (within the MWC scheme)
and the OZ-KH-FC description are also included in Fig-
ure 1. In these cases, the agreement with the simulation
data is significantly worse than within the OZ-DH-FC de-
scription. In particular, like for the pure LJ system (sub-
set (a) of Fig. 1), the OZ-SMSA-FC theory overestimates
while the OZ-KH-FC description underestimates consid-
erably the critical temperatures of the LJ-YK Ising fluid
for any ratio R ≥ 0 (see subsets (b)–(h)). It is worth em-
phasizing that the KH description is thermodynamically
self-consistent between the virial and energy routes [60]
(but not with the compressibility one) and thus satisfies
exactly the Gibbs-Duhem relation. For this reason, both
MWC and EPCP versions of the OZ-KH-FC theory will
lead to identical results. Note also that the OZ-SMSA-
FC results correspond to the SMSA bridge function with
the WCA partitioning of the LJ part of the total poten-
tial, while the OZ-DH-FC description deals with the DH
bridge function and the DH partitioning scheme. The hy-
brid scheme with the SMSA bridge function complimented
by the DH partitioning improves the results with respect
to the original SMSA-WCA ansatz, but they are worse
(and not shown in Fig. 1) than the OZ-DH-FC ones. On
the other hand, the hybridization of the DH closure with
the WCA partitioning leads to worse results (they shift to
the SMSA-WCA ones and are not shown in Fig. 1) with
respect to those of the original OZ-DH-FC description.
We see therefore, that the IE results are sensitive to both
the form of the approximate bridge function and the way
of partitioning the potential (in the hypothetical case of
the exact closure the results should be independent of the
partitioning).

3.2.2 MF versions

In the original MF work [19], the van der Waals-like (vdW)
equation of state P (ρ, T, B) = Ps − ρ2(aε + aεm

2)/2 with
the excluded volume approximation Pev = ρkBT/(1− ρv)
for the reference pressure Ps and the mean field magneti-
zation m = tanh[(B + aερm)/(kBT )] has been used. The
ratio of magnetic to the attractive part of nonmagnetic
interactions has been introduced as RMF = aε/aε. How-
ever, no explicit relations connecting the macroscopic pa-
rameters v, aε and aε with the parameters of the LJ-YK
potentials (Eqs. (2) and (3)) have been, in fact, presented.
This leads to difficulties of direct comparison between
the OZ-DH-FC and MF results since the correspondence
between the LJ-YK ratio R (Eq. (26)) and RMF re-
mains unknown. Moreover, in 3D fluids it is more natural
to deal with the Carnahan-Starling (CS) expression [62]
Ps = ρkBT (1 + η + η2 − η3)/(1 − η)3 for the reference
pressure, where η = ρv/4 denotes the packing fraction,
rather than with the vdW excluded volume one. The CS
pressure is quasiexact for 3D hard sphere systems and
coincides with the vdW counterpart only in the low den-
sity regime (ρ∗  1) where both expressions have the
same asymptotics, Pev|ρ∗�1 = ρkBT (1 + ρv + O(ρ2)) and
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Ps|ρ∗�1 = ρkBT (1+ 4η +O(η2)) = ρkBT (1+ ρv +O(ρ2))
(the higher-order terms O(ρ2) have been neglected).

The required correspondence can be derived by ex-
tending our recent MF development [20] for ideal Ising
fluids to the nonideal LJ-YK Ising case. Acting in the
spirit of reference [20], one finds that the macroscopic
parameters aε and aε should be related to the LJ and
YK potentials as aε = −4π

∫ ∞
0

gs(r)ϕa(r)r2dr and aε =
4π

∫ ∞
0

gs(r)J(r)r2dr, where gs(r) denotes the radial distri-
bution function of the reference system with the repulsion
part ϕs(r) of the LJ potential and ϕa(r) = ϕ(r) − ϕs(r)
represents the LJ attractive part. Since the van der Waals
description is itself only approximate, the quantities aε,
aε and v can be approximated as well within the same
order of accuracy. One of the ways lies in the representa-
tion of the reference system by a system of hard spheres
with some effective diameter σs. The latter can be de-
termined by requiring the second virial coefficients re-
lated to the hard sphere system with the particle diame-
ter σs and the reference system with the repulsion poten-
tial ϕs to be equal. This leads [20] to the value σ3

s (T ) =
3

∫ ∞
0

(1 − exp[−ϕs(r)/(kBT )])r2dr, so that the excluded
volume per particle and the packing fraction of the hard
sphere system are equal to v = 2πσ3

s /3 and η = ρv/4 =
πρσ3

s /6, respectively. Further, the radial distribution func-
tion of the reference system can be approximated by that
of the hard sphere system in the low density regime,
gs(r) ≈ Θ(r − σs), where Θ denotes the unit Heaviside
function, i.e., Θ(r−σs) = 1 for r ≥ σs and Θ(r−σs) = 0 for
r < σs. This allows to perform the analytical integration
aε ≈ −4π

∫ ∞
σs

ϕa(r)r2dr = 4πε(8
√

2σ3 − 3σ3
s )/9 (at σs ≤

21/6σ) and aε ≈ 4π
∫ ∞

σs
J(r)r2dr = 4πεσ2(σ + σs)e1−σs/σ.

Computations show that the effective diameter σs appears
to be very close to the LJ size σ of the particles for char-
acteristic temperatures of order T ∗ ∼ 1. For instance,
σs varies from 1.03σ to 0.99σ with varying the temper-
ature in a typical interval of T ∗ ∈ [0.6, 2]. In such a case,
we can put σs ≈ σ without loss of precision and obtain
aε ≈ 4πεσ3(8

√
2−3)/9 and aε ≈ 8πεσ3. This immediately

yields RMF = aε/aε = 18R/(8
√

2 − 3) ≈ 2.165R, i.e., the
MF ratio should be nearly two times larger with respect
to R.

Our MF calculations have been performed using the
vdW-like equation of state P (ρ, T, B) = Ps − ρ2(aε +
aεm

2)/2 with the CS reference pressure Ps at η =
πρσ3/6 = πρ∗/6 (this version will be referred to as MFvd-
WCS). The results of these calculations are given in Fig-
ure 1 as well. The MF binodals have been plotted for
the ratios RMF = 0, 0.1082, 0.1624, 0.1948, 0.2165, 0.249,
0.2887, and 0.433 in subsets (a)–(h) respectively, to satisfy
the above requirement RMF = 2.165R. It can be seen that
the deviations in this case from the MC simulation data
and OZ-DH-FC results are more significant than for the
OZ-SMSA-FC and OZ-KH-FC approaches. In particular,
the critical temperature and density are so underestimated
that the discrepancy appears to be much larger than that
of any version of the IE theory considered. As was ex-
pected, the MF approach can lead only to a qualitative
description of the phase diagram behavior.

Fig. 2. The OZ-DH-FC phase diagrams of the LJ-YK Ising
fluid for typical values of R and B∗ = 0 (bold solid curves), 0.01
(thin dashed), 0.1 (dashed), 0.3 (bold dashed), and (bottom to
top, solid) B∗ = 0.5, 1, 2, 3, and B∗ = ∞ (dotted). The MHR
data (circles) are shown for B∗ = 0.1, 0.5, and 2. The triple
point is plotted by the horizontal dashed line.

3.3 Nonzero magnetic field

The OZ-DH-FC phase diagrams of the LJ-YK Ising fluid
obtained in the presence of an external magnetic field
within the MWC scheme are plotted in Figure 2 for typ-
ical values of B and R. For the purpose of compari-
son, MHR examples are also included. On the basis of
the results shown in Figures 1 and 2 we can point out
four types of the phase diagram topology overall. For
Ru = 0.1 < R < ∞ (type I), the system exhibits a tricrit-
ical point (TCP) behavior at B = 0, see subsets (e)–(h)
of Figure 1 and (d)–(f) of Figure 2. This is similar to
the ideal Ising fluid with a soft-core repulsion potential
[20,21]. With turning on the external field (B �= 0), the
TCP transforms into a gas-liquid critical point (GLCP).
For Rl = 0.075 < R < 0.1 = Ru (type II), beside the
TCP, a GLCP exists even at B = 0 in the paramagnetic
phase region, see subset (d) of Figure 1 and (c) of Fig-
ure 2. The TCP now corresponds to a liquid-liquid transi-
tion between the paramagnetic and ferromagnetic phases.
Here, a triple point occurs too, where a rarefied paramag-
netic gas, a dense paramagnetic liquid, and a highly dense
ferromagnetic liquid coexist at the same temperature T
and pressure P (horizontal dashed lines in Figs. 1d and
2c). In the presence of the external field, region II splits
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Fig. 3. The critical temperatures and critical densities of gas-
liquid and liquid–liquid phase transitions in the LJ-YK Ising
fluid as functions of external field B at different R.

into two subregions in dependence of whether the gas-
liquid (type IIa, RvL < R < Ru) or liquid-liquid (type IIb,
Rl < R < RvL) critical line terminates at some finite value
B �= 0, where RvL = 0.094. If R ≤ Rl = 0.075 (type III),
the spatial interaction dominates over the spin one, so that
the GLCP remains, while the TCP transforms into a crit-
ical end point (CEP), see subsets (b) and (c) of Figure 1.
At B �= 0, the CEP disappears, while the influence of the
external field on the GLCP becomes weaker and weaker
with decreasing R (see subsets (a) and (b) of Fig. 2). At
R = 0 we come to the pure LJ fluid with the existence of
only the GLCP (see subset (a) of Fig. 1).

The gas-liquid and liquid-liquid critical temperatures
T ∗

G−L and T ∗
L−L as well as the critical densities ρ∗G−L and

ρ∗L−L are shown in Figure 3 as functions of the external
field strength B∗. It is obvious that for R = 0 the results
are independent of B. At small R, the modifications of
the phase diagrams with increasing B are monotonic in
TG−L, but they are nonmonotonic in the gas-liquid criti-

Fig. 4. The same as in Figures 2 and 3 but at a specific van
Laar value of R = RvL. The asymmetric tricritical point is
shown by a star. The binodals are plotted in subset (a) for
different B∗ varying from 0.03 (bottom) to 0.11 (top). The
MHR data (circles) are shown in (a) for B∗ = 0.09.

cal density ρ∗G−L (see subsets (a) and (b) of Figs. 2 and 3).
At intermediate R, the functions TG−L(B) and ρG−L(B)
behave similarly (subsets (e) and (f) of Fig. 3) as for small
R. On the other hand, the liquid-liquid functions TL−L(B)
and ρL−L(B) behave quite differently, namely, the critical
temperature starts to behave nonmonotonically, while the
critical density monotonically decreases (subsets (c) and
(d) of Figs. 2 and 3). For larger R, the function TG−L(B)
is nonmonotonic with the existence of a minimum. With
further increasing R ≥ 0.25 it becomes monotonically de-
creasing with rising B (subset (g) of Fig. 3). At the same
time, in the ideal-like regime R ≥ 0.25, the critical density
ρG−L(B) behaves nonmonotonically with the presence of
a maximum at some finite B (subset (h) of Fig. 3). Such
a complicated behavior is explained by a subtle interplay
between the translational and spin degrees of freedom. In
the infinite external field limit B → ∞ all the spins take
the same value s = +1. Then the Ising spin system trans-
forms into a simple nonmagnetic LJ-YK fluid with the
interparticle potential φ(r) → ϕ(r) − J(r) (see Eq. (1))
and the existence of only the gas-liquid critical point for
arbitrary values of R (see Figs. 2 and 3).

Under special conditions, namely, at the boundary
value RvL = 0.094, an unsymmetrical tricritical (so-called
van Laar) point arises additionally. The corresponding
phase diagrams and dependencies of the critical lines on
the external field strength are presented in subsets (a) and
(b) of Figure 4. The gas-liquid (on the left in subset (a)
and on the bottom in subset (b)) and liquid-liquid (on the
right in subset (a) and on the top in subset (b)) critical
points are shown in subset (a) as open and full squares, re-
spectively, connected by dashed curves, and as lower and
upper lying solid curves in subset (b). The curves meet in
the unsymmetrical tricritical point (star). It is identified
at B∗

vL ≈ 0.08, T ∗
vL ≈ 1.35, and ρ∗vL ≈ 0.40.

Phase diagrams similar to those found for the LJ-YK
Ising fluid are observed for other systems, such as YK-YK
Ising [21], XY [22,23], and Heisenberg [7,12] spin fluid
models, symmetric binary nonmagnetic mixtures [29–36],
mixtures of 3He-4He [39–41], Stockmayer fluids [63], etc.
The van Laar point was previously identified in the YK-
YK Ising [21] and XY [22,23] spin fluids as well as in sym-
metric mixtures [64]. Different spin fluid models differ in
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Table 1. Boundary ratios of magnetic to nonmagnetic inter-
actions corresponding to different Ising fluid models (see text
for notation).

Model Rl RvL Ru References
LJ-YK 0.075 0.094 0.100 this work
YK-YK 0.140 0.196 0.215 [21]

MFvdWCS 0.149 0.209 0.231 this work
MFvdW 0.211 0.279 0.304 [2,64]

their critical temperature and density dependencies on the
external field B. For example, in the ideal regime, when R
is large enough to neglect the influence of attractive non-
magnetic interactions, the gas-liquid critical temperature
decreases monotonically with increasing B for the Ising
model, while it behaves nonmonotonically for the XY and
Heisenberg systems [20–23,26]. For our case of the LJ-YK
Ising model, the ideal regime is observed for R ≥ 0.25
(see subset (g) of Fig. 3). The pattern complicates signif-
icantly in the nonideal regime, when both magnetic and
nonmagnetic interactions should be taken into account.
Here, the critical temperature and critical density depend
on the strength of the external field in a very complicated
way with various possible scenarios in dependence on the
value of R (see subsets (a)–(h) in Fig. 3).

3.4 Boundary relations

The differences in the phase diagram behavior of YK-
YK and LJ-YK spin fluids appear in their different lower
(Rl), upper (Ru) and van Laar (RvL) boundary ratio val-
ues at which the diagrams change their topology. The
IE boundary values found in this work for the LJ-YK
Ising fluid model are collected in Table 1. For the pur-
pose of comparison, the IE results for the YK-YK Ising
model [21] are included as well. In the latter case, the
ratio of magnetic to nonmagnetic interactions was intro-
duced as RYK = ε/εI > 0, where εI denotes the intensity
of the YK nonmagnetic attractive (sign “−”) potential
I(r) = −εIσ exp[−(r − σ)/σ]/r (cf. Eq. (3)). The MF
boundary values obtained in this work for the vdWCS
Ising model (see Sect. 3.2.2) are labeled as MFvdWCS
and presented in the table too (here Rl and Ru were cal-
culated numerically, while RvL was interpolated). The pre-
viously known MF results for the vdW Ising fluid [2,64],
marked by MFvdW, are also shown. Note that, in fact,
Rl and Ru were obtained in reference [2] for the 1D Ising
fluid (where the excluded volume pressure transforms into
Tonk’s counterpart), while RvL was evaluated in refer-
ence [64] for a symmetric binary mixture. These MF re-
sults demonstrate the obvious change of the boundary
values when turning from the excluded volume approxi-
mation to the quasiexact CS reference pressure.

A simple approximate relation between the YK-YK
and LJ-YK boundary values can be found by introduc-
ing a generalized ratio R of integrated strengths (as de-
fined by Eq. (25) of Ref. [21]) and assuming that different
Ising models with the same value of R should belong to
the same phase diagram topology. Then for the YK-YK

Table 2. Relations between boundary ratios of different Ising
fluid models (see text for notation).

Model Dl DvL Du D
MFvdWCS/YK-YK 1.06 1.07 1.07 1.13
MFvdWCS/LJ-YK 1.99 2.22 2.31 2.17

YK-YK/LJ-YK 1.87 2.09 2.15 1.92

model one finds R = − ∫
g(r)J(r)dr

/ ∫
g(r)I(r)dr ≡

RYK, where g(r) = x2g++(r) + 2x(1 − x)g+−(r) + (1 −
x)2g−−(r) is the total radial distribution function of the
Ising fluid. Thus RYK simply reduces to R indepen-
dently of g(r), because the functions J(r) and I(r) are
of the same YK form. For the LJ-YK model, the ratio
R = − ∫

g(r)J(r)dr
/ ∫

g(r)ϕ(r)dr > 0 cannot be eval-
uated analytically since the functions J(r) and ϕ(r) are
of the qualitatively different YK and LJ forms (sign “−”
arises because J and ϕ enter in the Hamiltonian under
different signs, see Eq. (1)) and the result will depend on
g(r). The radial distribution in the Ising fluid is a com-
plicated function of the interparticle distance r, density ρ,
magnetization m = 2x − 1, temperature T , and param-
eter R. To simplify calculations, it can be approximated
by its functional form in the low density and magnetiza-
tion (x ∼ 1/2) regime, i.e., g(r) ≈ (e−(ϕ(r)+J(r))/(kBT ) +
e−(ϕ(r)−J(r))/(kBT ))/2. For a typical temperature of or-
der T ∗ ∼ T ∗

vL ≈ 1.35 and R ∼ 0.1 this yields R =
− ∫

g(r)J(r)dr
/ ∫

g(r)ϕ(r)dr ≈ 1.92R (factor R almost
does not change with varying T and other parameters in
the region investigated), and thus RYK/R ≈ 1.92. At the
same time, as was derived in Section 3.2.2, the MFvdWCS
and LJ-YK ratios should be connected by the relation
RMF/R ≈ 2.17, so that RMF/RYK ≈ 2.17/1.92 ≈ 1.13.
The ratios of boundary values Rl,u,vL corresponding to
MFvdWCS and YK-YK, MFvdWCS and LJ-YK as well as
YK-YK and LJ-YK models are shown in Table 2 (marked
by Dl,u,vL) together with the above predictions (labeled
as D). In practice, these predictions will be satisfied of
course only approximately, reflecting the level of precision
of the simplified assumptions made during their deriva-
tions. As can be seen, the actual ratios Dl,u,vL are not
constant and slightly increase with increasing R, but the
deviations from D in each of the cases are small. In such
a way, the boundary ratios related to different Ising spin
fluid models can be nearly mapped one onto another cal-
culating only one generalized R coefficient.

4 Conclusion

We have proposed an IE extension of the DH approach to
fluids with both LJ translational and YK Ising spin inter-
actions in the presence of an external magnetic field. It
combines the standard OZ method with a specific Duh-
like partitioning of the total potential. A comparison with
simulations for the LJ-YK Ising spin fluid has shown that
the theory is efficient to provide a quantitative calculation
of the complicated phase diagrams in subcritical and crit-
ical regions. It can be extended to systems with XY and
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Heisenberg spin degrees of freedom or with dipole interac-
tions. These problems as well as the improvement of the
thermodynamic self-consistency of the IE approach can be
considered in further studies.
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